
Index-based Optimal Algorithm for Computing
K-Cores in Large Uncertain Graphs

Bohua Yang�, Dong Wen�, Lu Qin�, Ying Zhang�, Lijun Chang§ and Rong-Hua Li‡

�Centre for Artificial Intelligence, University of Technology Sydney, Australia
§The University of Sydney, Australia ‡Beijing Institute of Technology, China

�bohua.yang@student.uts.edu.au; {dong.wen, lu.qin, ying.zhang}@uts.edu.au;
§lijun.chang@sydney.edu.au; ‡lironghuascut@gmail.com

Abstract—Uncertainty in graph data occurs for a variety
of reasons, such as noise and measurement errors. Recently,
uncertain graph management and analysis have attracted many
research attentions. Among them, computing k-cores in uncertain
graphs (aka, (k, η)-cores) is an important problem and has
emerged in many applications, for example, community detec-
tion, protein-protein interaction network analysis and influence
maximization. Given an uncertain graph, the (k, η)-cores can be
derived by iteratively removing the vertex with an η-degree of less
than k and updating the η-degrees of its neighbors. However, the
results heavily depend on the two input parameters k and η, and
the settings for these parameters are unique to the specific graph
structure and the user’s subjective requirements. Additionally,
computing and updating the η-degree for each vertex is the most
costly component of the algorithm, and that cost is high. To
overcome these drawbacks, we have developed an index-based
solution for computing (k, η)-cores in this paper. The size of
the index is well bounded by O(m), where m is the number
of edges in the graph. Based on this index, queries for any k
and η can be answered in optimal time. Further, the method
is accompanied by several different optimizations to speed up
construction of the index. We conduct extensive experiments on
eight real-world datasets to practically evaluate the performance
of all the proposed algorithms. The results demonstrate that this
index-based approach is several orders of magnitude faster at
processing queries than the traditional online approaches.

I. INTRODUCTION

Graphs have been widely used to model sophisticated

relationships between different entities due to their strong

representative properties. Social networks, traffic networks and

biological networks are among the applications that benefit

from being expressed as graphs. However, many real-world

applications contain uncertainty in the form of noise [1], mea-

surement errors [2], the accuracy of predictions [3], privacy

concerns [4], and so on. These uncertain relationships are often

modeled as an uncertain graph, where the actual existence of

each edge is assigned an “existence probability”.

A large number of studies on uncertain graph analysis

and management have involved combining fundamental graph

problems with uncertain graph models. These studies span

a range of tasks, such as reliability searches [5], frequent

pattern mining [6] and dense subgraph detection [7]. Among

the solutions, k-core is a popular and well-studied cohesive

subgraph metric [8], and the k-core conception in the uncertain

graph model is originally formalized in [9].

v6

v3

v1

v5

v2

v7

v4

0.2

0
.5

0.2

0.8 0.8

0.6

0.2

0.4

0
.5

v8

v10
v9

0.80.5

0.5 0
.8

0.8

Fig. 1. The (k, η)-cores of G for k = 2 and η = 0.3

k-Cores in Deterministic Graphs. Given a deterministic

graph, a k-core is a maximal connected subgraph where each

vertex has a degree of at least k [8]. k-cores are computed

by iteratively removing the vertex with the minimum degree

and incident edges. This is done in linear time. Computing k-

cores has a large number of real-world applications: commu-

nity detection [10], [11], network visualization [12], network

topology analysis [8], system structure analysis [13], protein-

protein interaction network analysis [14], and so on. It also

serves to find an approximation result for densest subgraph

[15], betweenness score [16].

(k, η)-Cores in Uncertain Graphs. In the context of uncertain

graph models, the degree of each vertex is uncertain. A (k, η)-
core model in uncertain graphs is formalized in [9]. A (k, η)-
core is a maximal subgraph where each vertex has at least

a probability of η that the degree of this vertex is at least

k. Note that, in this paper, we have imposed a connectivity

constraint to ensure the cohesiveness of the resulting subgraph,

i.e., a (k, η)-core is connected. Figure 1 illustrates an example

of the (k, η)-cores. Here, given an integer k = 2 and a

probability threshold η = 0.3, the uncertain graph contains

two (2, 0.3)-cores — G[{v2, v3, v4, v5}] and G[{v7, v9, v10}].
Computing the (k, η)-cores can be naturally applied in the

aforementioned areas. For example, in DBLP collaboration

network, each vertex represents an author, and edges represent

co-authorships. The edge probability is an exponential function

based on the number of collaborations [17]. A (k, η)-core in

this case may be a research group.

Additionally, [9] introduced some specific applications for

(k, η)-cores associated with uncertain graph models, such as

influence maximization and task-driven team formation.

Given an uncertain graph G, an integer k and a probability

threshold η, this paper explores the problem of efficiently

computing all the (k, η)-cores in G. In other words, our aim

is to compute a set of vertex sets, and the induced subgraph

64

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00015

of each vertex set is a (k, η)-core.

The Online Approach. In the original paper [9], (k, η)-
cores are derived using an η-core decomposition algorithm,

given an uncertain graph G and a probability threshold η. The

algorithm computes an η-core number for each vertex u in

G, where the η-core number for u is the largest integer k
such that a (k, η)-core containing u exists. Let the η-degree

of a vertex u be the largest possible degree such that the

probability of u to have that degree is no less than η. The

algorithm iteratively removes the vertex with the minimum

η-degree and updates the η-degrees of the neighbors. With a

small modification, this algorithm could compute all the (k, η)-
cores in our problem. Specifically, iteratively removing all the

vertices with η-degrees of less than k would result in a vertex

set that matches our specifications. The final result can then

be generated by performing a connected component detection

procedure on that vertex set.

Motivation. Even though the online approach can successfully

compute the (k, η)-cores, several challenges remain:

• Parameters Tuning. The results heavily depend on two

sensitive input parameters, k and η, and these parameter

settings usually depend on the topological structure of the

input graph along with user’s subjective requirements. To

arrive at a satisfying result, users may need to run the

algorithm several times to properly tune the parameters.

• Query Efficiency. Computing and updating the η-degree for

each vertex is costly and accounts for the majority of the

running time in the algorithm. Even though [9] proposes

a dynamic programming approach to partially offset this

problem, the algorithm is still time-intensive and is not

scalable to large uncertain graphs.

An Index-based Approach. Motivated by these challenges,

we have developed an order-based index structure, called

UCO-Index. The general idea is to retain the resulting

vertices for every possible k and η. Specifically, a probability

order for each vertex is maintained. Given an integer k and a

probability threshold η, a vertex in the result set is identified

by comparing the k-th value in the order for this vertex

with η. The final result is then produced by performing a

connected component detection on the vertex set. We have

imposed a bound on the length of the order for each vertex

according to the core number, i.e., the largest integer k such

that a k-core exists containing this vertex. Therefore, the space

for the UCO-Index is well-bounded by O(m), where m is

the number of edges in the graph. The time complexity for

query processing is O(n+
∑

u∈C Deg(u)) for every possible

parameter setting of k and η, where n is the number of vertices

and
∑

u∈C Deg(u) is the sum of degrees of all the vertices

in the result set C.

However, there is still room to reduce the amount of time

it takes for query processing based on the UCO-Index.

Hence, we also propose an alternative method for computing

the (k, η)-cores based on a forest index structure, called

UCF -Index. In this method, rather than maintaining the order

of each vertex, UCF -Index maintains a tree structure for

each integer k. Each tree node contains a set of vertices, and

a probability value is assigned to the tree node, which means

a corresponding (k, η)-core that contains these vertices exists.

The size of UCF -Index is also bounded by O(m). Using

the UCF -Index, we make the time complexity of query

processing optimal. In other words, let |C| be the number

of vertices in the result set. The running time of the query

algorithm is bounded by O(|C|).
Further, we have explored two optimizations to speed up

construction of the index. The first one is called core-based
reduction. By computing the core number of each vertex, some

unnecessary neighbors of each vertex are pruned to reduce the

running time required to compute and update the probabilities

for each vertex. This approach is especially effective in the

last few iterations of the index construction algorithm.

The second optimization is called core-based ordering. This

approach avoids the need for repeated computations of each

vertex in the dynamic programming schema as each iteration

of index construction algorithm proceeds without breaking

the correctness. Our experiments demonstrate a significant

increase in speed as a result of these two optimizations.

Contributions. The main contributions of this paper are

summarized as follows:

• The first index-based solution for computing (k, η)-cores
in uncertain graphs. This study presents an effective index

structure, called UCF -Index, for computing all the (k, η)-
cores. The size of UCF -Index is well-bounded by O(m).
To the best of our knowledge, this is the first index-based

solution to this problem.

• Optimal query processing. We also present an efficient query

algorithm based on UCF -Index for any possible k and η.

The time complexity is optimal and linear to the number of

vertices in the result set.

• Optimizations for index construction. Two optimizations for

the index construction are included: core-based reduction
and core-based ordering. Using these two optimizations, the

query processing time is significantly reduced.

• Extensive performance studies on both real-world and syn-
thetic datasets. Extensive experiments were conducted with

all the proposed algorithms on eight real-world datasets. The

results demonstrate that this index-based approach is several

orders of magnitude faster than the online approach.

Outline. The rest of this paper is summarized as follows.

Section II provides some preliminary concepts and formally

defines the problem. In Section III, we review an existing

solution and explain the online approach in detail. Section IV

describes the basic structure of the index. Section V presents

the optimized forest-based index structure. Section VI prac-

tically evaluates the proposed algorithms in practical terms.

Section VII summarizes related works, and Section VIII

concludes the paper. Due to the space limitations, we omit

the proofs for some lemmas and theorems.

II. PRELIMINARIES

Before stating the problem, we first introduce the concept

of k-cores in deterministic graphs, followed by the definition

of (k, η)-core in uncertain graphs.

65

K-Cores in Deterministic Graphs. Given a deterministic

undirected graph G(V,E), V is the set of vertices and E
is the set of edges. Given a vertex u in G, the neighbor

set of u is denoted as N(u,G), i.e., N(u,G) = {v ∈
V |(u, v) ∈ E}. The degree of u is denoted as deg(u,G), i.e.,

deg(u,G) = |N(u,G)|. We use the terms N(u) and deg(u)
for simplicity when the context is clear. Given a set of vertices

V ′, the induced subgraph of V ′ is denoted as G[V ′], i.e.,

G[V ′] = (V ′, {(u, v) ∈ E|u, v ∈ V ′}). The definitions for

k-core and core number are presented as follows.

DEFINITION 1. (k-CORE) Given a graph G(V,E) and an in-
teger k, the k-core is a maximal connected induced subgraph
G′[V ′] in which every vertex has a degree of at least k, i.e.,
∀u ∈ V ′, deg(u,G′) ≥ k. [8]
DEFINITION 2. (CORE NUMBER) Given a graph G(V,E),
the core number for a vertex u, denoted as core(u), is the
largest integer of k such that a k-core containing u exists.

Given a deterministic graph G, the core numbers for all ver-

tices can be computed by iteratively removing the vertex with

the minimum degree. The pseudocode is given in Algorithm 1.

Algorithm 1: CORE DECOMPOSITION

Input: A Graph G(V,E)
Output: The core numbers for all vertices in G

1 while V �= ∅ do
2 k ← minu∈V deg(u,G);
3 while ∃u ∈ V s.t. deg(u,G) ≤ k do
4 core(u)← k;

5 foreach v ∈ N(u,G) do
6 remove edge (u, v) from G;

7 deg(v,G)← deg(v,G)− 1;

8 V ← V \ {u};

9 return core(u) for all vertices u;

K-Core in Uncertain Graphs. Given an uncertain graph

G(V,E, p), p is a function that maps each edge to a probability

value in [0, 1] in addition to the vertex set V and the edge set

E. The probability of an edge e ∈ E is denoted by pe. We

denote the neighbor set and the degree of a vertex u in an

uncertain graph G as N (u,G) and Deg(u,G) respectively.

In line with existing works, we assume that the probability

of each edge actually existing is independent, and adopt

the well-known possible-world semantics for uncertain graph

analysis. There exist 2|E| possible graph instances under this

assumption. The probability of observing a graph instance

G(V,E′), denoted by Pr(G), is:

Pr(G) =
∏
e∈E′

pe
∏

e∈E\E′
(1− pe). (1)

The concept of (k, η)-cores, originally defined in [9], is

based on possible-world semantics.

DEFINITION 3. ((k, η)-CORE) Given an uncertain graph
G(V,E, p), an integer k and a probabilistic threshold η ∈
[0, 1], the (k, η)-core of G is a maximal connected induced
subgraph G′[V ′] such that the probability that each vertex

u ∈ V ′ has a degree of at least k in G′ is not less than
η, i.e., ∀u ∈ V ′, P r[deg(u,G′) ≥ k] ≥ η.

Note that we have slightly revised this definition by adding

a connectivity constraint to the (k, η)-cores. An example of

(k, η)-cores is given as follows.

EXAMPLE 1. Consider the uncertain graph G in Figure 1.
Given an integer k = 2 and a probability threshold η = 0.3,
we identify two (2, 0.3)-cores, as marked in the figure. One is
G[{v2, v3, v4, v5}], and the other one is G[{v7, v9, v10}]. We
denote G[{v2, v3, v4, v5}] as G1 for simplicity. Consider the
vertex v2 in G1. There are three edges connected to v2 in G1,
and we have Pr[deg(v2,G1) ≥ 2] = 0.568. Similarly, we have
Pr[deg(v3,G1) ≥ 2] = 0.8, Pr[deg(v4,G1) ≥ 2] = 0.3 and
Pr[deg(v5,G1) ≥ 2] = 0.656. G1 is maximal. Assume that we
add v1 in to G1. We have Pr[deg(v1,G1) ≥ 2] = 0.1 < 0.3.
Therefore, v1 cannot be in the (2, 0.3)-core.

Based on Definition 3, the problem is defined as follows.

Problem Definition. Given an uncertain graph G(V,E, p), an

integer k and a probabilistic threshold η ∈ [0, 1], we examine

the problem of efficiently computing all the (k, η)-cores of G.

Specifically, let C be the vertex set such that the induced

subgraph G[C] of C is a (k, η)-core. The aim is to compute

a set R containing all such vertex sets C without any dupli-

cation. In the case of k = 2, η = 0.3 in Figure 1, we return

{{v2, v3, v4, v5}, {v7, v9, v10}}.

III. ONLINE (k, η)-CORES COMPUTATION

In this section, we first review an existing solution [9] for

the problem of η-core decomposition, as several key concepts

and ideas intuitively fit our problem. Then, we provide our

online solution for computing (k, η)-cores.

A. An Existing Solution for η-Core Decomposition
Given an uncertain graph G, let G≥k

u be the set of all possible

graph instances where u has a degree of at least k, i.e., G≥k
u =

{G
 G|deg(u,G) ≥ k}. We have the following equation [9]:

Pr[deg(u,G) ≥ k] =
∑

G∈G≥k
u

Pr(G). (2)

Based on Equation 2, the definition for the η-degree for each

vertex follows.

DEFINITION 4. (η-DEGREE) Given an uncertain graph
G(V,E, p) and a probabilistic threshold η ∈ [0, 1], the η-
degree of a vertex u ∈ V , denoted by η-deg(u,G), is the
largest integer of k that satisfies Pr[deg(u,G) ≥ k] ≥ η. [9]

Given a vertex u, Pr[deg(u) ≥ k] monotonously decreases

when k increases. Next, we define the η-core number.

DEFINITION 5. (η-CORE NUMBER) Given an uncertain
graph G(V,E, p) and a probabilistic threshold η ∈ [0, 1], the
η-core number for a vertex u, denoted as η-core(u), is the
largest integer of k such that a (k, η)-core containing u exists.

Based on Definition 3 and Definition 5, we have the

following lemma.

LEMMA 1. Given an uncertain graph G and a probability
threshold η ∈ [0, 1], a vertex u is in a (k, η)-core if and only
if η-core(u) ≥ k.

66

Algorithm 2: η-CORE DECOMPOSITION

Input: An uncertain graph G(V,E, p) and a probability

threshold η
Output: η-core numbers for all vertices in G

1 compute η-deg(u,G) for all u ∈ V ;

2 while G is not empty do
3 k ← minu∈V η-deg(u,G);
4 while ∃u ∈ V s.t. η-deg(u,G) ≤ k do
5 η-core(u)← k;

6 foreach v ∈ N (u,G) do
7 remove edge (u, v) from G;

8 update η-deg(v,G);
9 V ← V \ {u};

10 return η-core(u) for all vertices u;

The problem of computing the η-core numbers for all ver-

tices in the uncertain graph G is called η-core decomposition.

The solution proposed in [9] is provided in Algorithm 2.

Algorithm 2 shares the similar idea with Algorithm 1,

and the pseudocode is self-explanatory. The key steps in the

algorithm are computing (line 1) and updating (line 8) the

η-degrees of the vertices. We introduce their details below.

η-Degree Computation. To compute the η-degree, we first

present the following equation:

Pr[deg(u) ≥ k] =

Deg(u)∑

i=k

Pr[deg(u) = i] = 1−
k−1∑

i=0

Pr[deg(u) = i].

(3)

Based on Equation 3, we can start with Pr[deg(u) ≥ 0] =
1. Iteratively, we increase i by one and compute Pr[deg(u) =
i] for a vertex u. We calculate Pr[deg(u) ≥ i + 1] as

Pr[deg(u) ≥ i] − Pr[deg(u) = i]. We repeat this step and

terminate once Pr[deg(u) ≥ i + 1] < η. Then we have

η-deg(u) = i.
To compute Pr[deg(u) = i] for a vertex u, we use

the dynamic-programming method given in [9]. Assume that

E(u) = {e1, e2, ..., eDeg(u)} is the set of all the edges

connected to u in some order. The intuitive idea of dynamic

programming is that, if a vertex u has a degree of i, one of

the following two cases applies: either (i) i− 1 edges exist in

{e1, e2, ..., eDeg(u)−1} and eDeg(u) exists; or (ii) i edges exist

in {e1, e2, ..., eDeg(u)−1} and eDeg(u) does not exist.

Given a subset E′(u) ⊆ E(u), let deg(u|E′(u)) be the

degree of u in the subgraph G′(V,E\(E(u)\E′(u)), p), and

X(h, j) = Pr[deg(u|{e1, e2, ..., eh}) = j]. We have the

following dynamic-programming recursive function [9] for all

h ∈ [1, Deg(u)], j ∈ [0, h]:

X(h, j) = pehX(h− 1, j − 1) + (1− peh)X(h− 1, j). (4)

Several initialization cases are also given as follows:⎧⎨
⎩

X(0, 0) = 1,
X(h,−1) = 0, for all h ∈ [0, Deg(u)],
X(h, j) = 0, for all h ∈ [0, Deg(u)], j ∈ [h+ 1, i].

(5)

The time complexity to compute the η-degree of a vertex is

given as follows.

LEMMA 2. The time complexity to compute the η-degree of a
vertex u is O(η-deg(u) ·Deg(u)). [9]
η-Degree Update. Given the incident edge set E(u) of a

vertex u, assume that an edge e is removed from E(u). To

compute the updated probability Pr[deg(u|E(u)\{e}) = i],
we introduce the following equation [9]:

Pr[deg(u|E(u)\{e}) = i)] =

Pr[deg(u) = i]− pePr[deg(u|E(u)\{e}) = i− 1]

1− pe
.

(6)

Based on Equation 6, we compute Pr[deg(u|E(u)\{e}) =
i] for each i ∈ [1, η-deg(u)] in constant time, given that

Pr[deg(u|E(u)\{e}) = 0] = 1
1−pe

Pr[deg(u) = 0]. The time

complexity to update the η-degree is given as follows.

LEMMA 3. Given an uncertain graph G and a removed inci-
dent edge e to a vertex u, the time complexity to update the
η-degree of u is O(η-deg(u)). [9]

We also provide the time complexity of Algorithm 2 below.

LEMMA 4. Given an uncertain graph G(V,E, p), the time
complexity of Algorithm 2 is O(

∑
u∈V η-deg(u) · Deg(u)).

[9]
B. Our Approach to Compute (k, η)-Cores

Based on several concepts introduced in the previous sec-

tion, we turn to the online approach for computing all the

(k, η)-cores. Our approach is similar to Algorithm 2, which

iteratively removes the vertex that does not belong to the result

set. Before presenting the algorithm, we make the following

observation about optimization.

OBSERVATION 1. Given an uncertain graph G and a (k, η)-
core G[C] for any parameter settings for k and η, there exists
a k-core G[C ′] containing G[C], i.e., C ⊆ C ′.

Based on Observation 1, we can first recursively remove

the vertices with degrees of less than k, since these vertices

cannot be in the result set for any (k, η)-core. We provide the

pseudocode for our approach in Algorithm 3.

Lines 1–5 compute the k-cores. Lines 6–11 recursively re-

move the vertices with η-degrees of less than k and generate a

subgraph containing all result vertices. Lines 12–14 determine

the connected components in the result. The time complexity

of Algorithm 3 is O(
∑

u∈V η-deg(u) ·Deg(u)), which is the

same as that of Algorithm 2.

Drawbacks of the Online Approach. Even though Algo-

rithm 3 successfully computes all the (k, η)-cores, several

drawbacks still exist. First, changing the input parameters

may heavily influence the resulting (k, η)-cores, especially

in large graphs. We consider the case in Figure 1. If we

change the input parameter η from 0.3 to 0.4 and keep

k = 2, vertex v4 will be removed and the result will change

to {{v2, v3, v5}, {v7, v9, v10}}. Additionally, we find that the

major cost in Algorithm 3 is computing and updating the η-

degrees of the vertices. This is extremely time-consuming and

means the algorithm cannot be scaled to big graphs.

Motivated by the above challenges, we propose an index-

based approach. Based on the proposed index, we can answer

a query for any given k and η with a time complexity that

is only proportional to the size of the results. To make our

67

Algorithm 3: (k, η)-CORES COMPUTATION

Input: An uncertain graph G(V,E, p), an integer k and a

probability threshold η
Output: All (k, η)-cores in G

1 while ∃u ∈ V s.t. Deg(u) < k do
2 foreach v ∈ N (u,G) do
3 remove the edge (u, v) from G;

4 Deg(v)← Deg(v)− 1;

5 V ← V \ {u};
6 compute η-deg(u) for all u ∈ V ;

7 while ∃u ∈ V s.t. η-deg(u) < k do
8 foreach v ∈ N (u,G) do
9 remove the edge (u, v) from G;

10 update η-deg(v);

11 V ← V \ {u};
12 R ← ∅;
13 foreach connected component G[C] ∈ G do
14 R ← R∪ {C};
15 return R;

solution scalable to big graphs, the index size is well-bounded,

with an acceptable time cost for constructing the index.

We propose a basic index approach in Section IV, and in

Section V, we optimize both the index structure and the query

processing procedure.

IV. AN INDEX-BASED APPROACH

A. The Index Structure
In this section, we introduce an index structure, called the

uncertain core η-orders index (UCO-Index). The general

idea of this index is to maintain the result vertices for every

possible k and η. In other words, given an integer k and

a probability threshold η, we aim to efficiently compute all

the result vertices based on the index structure. To complete

this task, we start by computing all result vertices from any

given probability threshold η under a specific fixed integer k,

as there is only a limited number of possible k. Based on

Observation 1, we provide the range of integer k as follows.

OBSERVATION 2. Given an uncertain graph G, we only need
to consider the parameter 1 ≤ k ≤ kmax, where kmax =
maxu∈V core(u).

If k > kmax, the probability that a (k, η)-core exists is

0. We also provide the largest possible integer for k of each

vertex in the following observation.

OBSERVATION 3. Given an uncertain graph G and an integer
k, a vertex u cannot be in the (k, η)-core if core(u) < k.

Based on Observation 3, we derive a candidate set of result

vertices by only considering the parameter k. That is {u ∈
V |core(u) ≥ k}.

Now, given the candidate set for each integer k, we consider

computing the exact result set by the probability threshold η.

Recall that a vertex u is in the (k, η)-core if the η-degree of

u is at least k. We have the following lemma.

LEMMA 5. Given an uncertain graph G, a parameter k and
two probability threshold 0 ≤ η ≤ η′ ≤ 1, a vertex u is in
(k, η)-core if it is in (k, η′)-core.

According to the monotonicity in Lemma 5, we only need

to save the largest probability value η for each vertex u that

will be in the (k, η)-core. We call such value the η-threshold,

which is formally defined as follows.

DEFINITION 6. (η-THRESHOLD) Given an uncertain graph
G(V,E, p) and an integer k, the η-threshold of a vertex u,
denoted by η-thresholdk(u), is the largest η such that a
(k, η)-core containing u exists.

Based on Observation 3 and Definition 6, we have

η-thresholdk(u) = 0 for any vertex u if core(u) < k, and

we give a necessary and sufficient condition that a vertex will

be in the (k, η)-core as follows.

LEMMA 6. Given an uncertain graph G, an integer k and a
probability threshold η, a vertex u is in the (k, η)-core if and
only if η-thresholdk(u) ≥ η.

To efficiently compute all result vertices, we save all η-

thresholds of each vertex u in an order, which is formally

defined as follows.

DEFINITION 7. (η-ORDER) Given an uncertain graph G and
a vertex u, the η-order of u, denoted by η-order(u), is a
probability order such that (i) the i-th value in η-order(u) is
η-thresholdi(u), and (ii) the length of η-order(u) is core(u).

v9

0.9

0.4

v10

0.9

0.4

v1

0.6

v2

0.92

v3 v4 v5 v6 v7 v8

0.80.60.76 0.90.920.92

0.1 0.40.480.30.480.480.1

0.040.040.04 0.04

1

2

3

k

Fig. 2. The UCO-Index of G
EXAMPLE 2. The η-orders for all vertices in the uncertain
graph G in Figure 1 are given in Figure 2. We consider the ex-
ample of vertex v4. Given k = 2, we have η-threshold2(v4) =
0.3. That means v4 is in a (2, 0.3)-core, but not in any (2, η)-
core if η > 0.3.

Given the η-order of a vertex u and an integer k, we use

a constant time complexity to compute the η-thresholdk(u).
We save the η-orders for all vertices as our UCO-Index. The

size of the UCO-Index is well-bounded.

THEOREM 1. Given an uncertain graph G(V,E, p), the space
complexity of the UCO-Index is O(

∑
u∈V core(u)).

Since core(u) ≤ Deg(u) for each vertex u, the size of the

UCO-Index is also roughly bounded by O(|E|).
B. Query Processing

Before presenting the query processing algorithm, we first

give an alternative definition for the (k, η)-core based on

Definition 6.

LEMMA 7. Given a set of vertices C in an uncertain graph
G, the induced subgraph G[C] is a (k, η)-core if and only if
(i) ∀u ∈ C, η-thresholdk(u) ≥ η; (ii) G[C] is connected; and
(iii) C is maximal.

Based on the above lemma, we present the pseudocode

for the query processing in Algorithm 4. It first identifies

all vertices whose η-threshold is not less than η in line 1.

68

Algorithm 4: UCO-BASED QUERY

Input: An uncertain graph G(V,E, p), an integer k, a

probability threshold η and UCO-Index
Output: All (k, η)-cores in G

1 V ′ ← {u ∈ V |η-thresholdk(u) ≥ η};
2 R ← ∅;
3 foreach connected component G[C] ∈ G[V ′] do
4 R ← R∪ {C};
5 return R;

Given the input integer k, the η-threshold of a vertex u can

be computed by checking the k-th item in the η-order of u
according to Definition 7. The algorithm then computes each

(k, η)-core in lines 3–4. The correctness of Algorithm 4 can

be guaranteed according to Lemma 7. The running time of

Algorithm 4 is analyzed as follows.

THEOREM 2. Given an uncertain graph G(V,E, p), an inte-
ger k and a probability threshold η, the time complexity of
Algorithm 4 is O(|V |+∑

u∈C Deg(u)), where C is the set of
all result vertices, i.e., C = {u ∈ V |η-thresholdk(u) ≥ η}.
C. Index Construction

Before introducing the algorithm used to construct the

UCO-Index, we first give the following definition for the

ease of presentation.

DEFINITION 8. (k-PROBABILITY) Given an uncertain graph
G and an integer k, the k-probability of a vertex u, denoted
by k-prob(u,G), is the probability that Pr[deg(u,G) ≥ k].

Based on Definition 8, the general idea to construct the

UCO-Index is iteratively removing the vertex with the

minimum k-probability. The detailed pseudocode is given in

Algorithm 5.

In Algorithm 5, an empty order is initialized for each vertex

in line 2. The η-thresholds for all vertices under a specific k
are computed from line 4 to line 18. Specifically, a vertex

u with the minimum k-probability is selected in line 10. In

line 11, the variable curThres is used to save the η-threshold

for the selected vertex u. We know that the (k, curThres)-
core exists if curThres > 0 in line 12. The variable isEnd is

used to identify whether the iterations should be terminated,

and we assign isEnd with false if curThre > 0 in line 13.

We push the η-threshold of u into the η-order of u in line 14.

We remove the vertex u and update the k-probability for each

neighbor v of u in lines 15–18. The η-orders are derived when

the algorithm is terminated. The prove is as follows.

THEOREM 3. Given an uncertain graph G, Algorithm 5 cor-
rectly computes the η-orders for all vertices in G.
THEOREM 4. Given an uncertain graph G(V,E, p), the time
complexity of Algorithm 5 is O(kmax|V | log |V |+ k2max|E|),
where kmax = maxu∈V core(u).
PROOF. Based on Lemma 2 and Lemma 3, given a vertex u,
computing (line 8) and updating (line 18) the k-probability
cost O(k ·Deg(u)) time and O(k) time respectively.

In each iteration of lines 3–19, the time complexity of line 8
is O(

∑
u∈V k · Deg(u)). We use a minimum priority queue

Algorithm 5: UCO-INDEX CONSTRUCTION

Input: An uncertain graph G(V,E, p)
Output: UCO-Index of G

1 k ← 0;

2 foreach u ∈ V do η-order(u)← ∅;
3 repeat
4 k ← k + 1;

5 isEnd← true;

6 G′ ← G;

7 curThres← 0;

8 compute k-prob(u) for each u ∈ V ′;
9 while G′ is not empty do

10 u← argminv∈V ′ k-prob(v,G′);
11 curThres← max(k-prob(u,G′), curThres);
12 if curThres > 0 then
13 isEnd← false;

14 η-order(u).push(curThres);

15 V ′ ← V ′ \ {u};
16 foreach v ∈ N (u,G′) do
17 remove the edge (u, v) from G′;
18 update k-prob(v,G′);

19 until isEnd = true;

20 return η-order(u) for all vertices u;

(implemented by a Fibonacci heap) to maintain all vertices
where the keys are their k-probabilities. The Fibonacci heap
takes a constant amount of time for insertion, and linear
amount of time to build the priority queue, plus a constant
amount of time for updating if the involved key is decreased,
and a logarithmic amount of time for delete-min. Thus, in
each iteration of lines 3–19, line 10 and line 15 totally take
O(|V | log |V |) time to remove the vertex with the minimum k-
probability, and lines 16–18 totally take O(

∑
u∈V k ·Deg(u))

time for each k, since the k-probability of each vertex u can
be updated at most Deg(u) times.

Therefore each iteration in lines 3–19 takes O(|V | log |V |+∑
u∈V k · Deg(u)) time, which can be arranged as

O(|V | log |V | + k|E|). The number of iterations is bounded
by O(kmax), where kmax = maxu∈V core(u). The time
complexity of Algorithm 5 is O(kmax|V | log |V |+ k2max|E|).

V. MAKING QUERY PROCESSING OPTIMAL

We proposed a UCO-Index based approach in the previous

section. Even though computing the η-degree is avoided and

the used space can be well-bounded, the UCO-Index still

needs to detect all vertices to compute the results in the query

processing, and this may be hard to tolerate in big graphs. To

address this issue, we propose a forest-based index structure,

namely uncertain core η-forest index (UCF -Index). Based on

the UCF -Index, we compute the result set in optimal time.

The index structure is introduced in Section V-A. We

provide the query processing algorithm in Section V-B. We

propose the algorithm to construct the UCF -Index with

several optimization techniques in Section V-C.

69

0.1

0.3

0.4

0.48

𝛈-threshold𝛈-tree

v10

v1 v6

v7 v9

v4

v2 v3 v5

Fig. 3. The η-tree of G for k = 2

A. Forest-based Index Structure

According to Lemma 7, the key to computing all re-

sult (k, η)-cores is computing all vertices of u such that

η-thresholdk(u) ≥ η. This costs O(|V |) time in Algorithm 4.

A straightforward idea to improve the query’s efficiency is to

sort the vertices in a non-increasing order of their η-threshold

for each integer k. Based on this structure, we can compute

all result vertices in optimal time, and the total size of this

structure can still be bounded by O(
∑

u∈V core(u)). However,

given that there is no topological information between vertices,

we still use O(
∑

u∈C Deg(u)) time to identify the connected

components, where C = {u ∈ V |η-thresholdk(u) ≥ η}.
Motivated by this, we propose a novel index, called the

UCF -Index, which organizes the vertices and their η-

thresholds into a tree structure, for each possible integer k.

The tree is built based on Lemma 5, where vertices with

smaller η-thresholds are on the upper side, and larger η-

thresholds are on the lower side. We name the tree structure

η-tree, which is denoted by η-treek. Specifically, let Ck be

the set of vertices whose core numbers are not less than k,

i.e., Ck = {u ∈ V |core(u) ≥ k}. We divide all vertices in Ck

into different tree nodes in η-treek. Considering a tree node X

in the η-treek, the attributes of X are summarized as follows:

• X.vertices: return a set of vertices.

• X.η-threshold: return η-thresholdk(u) for any vertex

u ∈ X.vertices.

• X.parent: return the parent node of X.

• X.children: return the children nodes of X.

The details to implement these attributes are presented

below. Formally, the vertex set for each tree node is computed

using the following rule.

LEMMA 8. Given an uncertain graph G and an integer k, we
group a vertex set S into a tree node X, i.e., X.vertices = S
if (i) ∀u, v ∈ S, η-thresholdk(u) = η-thresholdk(v); (ii) let
η = η-thresholdk(u) for any u ∈ S, there is a (k, η)-core
G[C], such that S ⊆ C; and (iii) S is maximal.

Then we give the rules for the parent-children relationship

of tree nodes. Let G[VX] be the (k,X.η-threshold)-core con-

taining X.vertices, and N(GX) be the set of tree nodes in

which each tree node Y satisfies ∃u ∈ VX, v ∈ Y.vertices :
(u, v) ∈ E ∧ v �∈ VX. Note that there does not exist a tree

node Y ∈ N(GX) such that Y.η-threshold ≥ X.η-threshold.

Otherwise, the vertices in Y also belong to VX. The parent for

each tree node is defined as follows.

LEMMA 9. Given an uncertain graph G and an integer k, a
tree node Y is the parent of the tree node X in η-treek, if Y
is the tree node in N(GX) with the largest η-threshold, i.e.,
Y = argmax

Y∈N(GX) Y.η-threshold.

Algorithm 6: UCF-BASED QUERY

Input: An uncertain graph G(V,E, p), an integer k, a

probability threshold η and UCF -Index index

Output: All (k, η)-cores in G
1 T ← the set of all tree nodes in η-treek;

2 S ← initialize an empty stack;

3 while T is not empty do
4 X← argmax

X∈T X.η-threshold;

5 if X.η-threshold ≥ η then S.push(X);
6 else break;

7 T ← T \ {X};
8 R ← ∅;
9 while S is not empty do

10 X← S.pop();
11 if X is visited then continue;

12 C ← ∅;
13 Q ← initialize an empty queue;

14 Q.insert(X);
15 while Q is not empty do
16 Y← Q.pop();
17 mark Y as visited;

18 C ← C ∪ Y.vertices;

19 foreach Z ∈ Y.children do Q.insert(Z);
20 R ← R∪ {C};
21 return R;

In the case of N(GX) = ∅, the tree node X is the root node,

and there may exist more than one trees for each integer k.

We give an example of the tree node and the η-tree as follows.

EXAMPLE 3. Still considering the uncertain graph G in Fig-
ure 1, we give the η-tree of G for k = 2 in Figure 3. The
η-threshold for each tree node is listed on the right side. For
the tree node {v2, v3, v5}, the corresponding (2, 0.48)-core is
the induced subgraph of the same vertex set. There are two
neighbor tree nodes — {v1, v6} and {v4}. The η-threshold of
{v4} is larger, and we set {v4} as the parent of {v2, v3, v5}.
THEOREM 5. Given an uncertain graph G(V,E, p), the space
complexity of the UCF -Index is O(

∑
u∈V core(u)).

B. Optimal Query Processing

We give an alternative definition for (k, η)-core based on

the proposed UCF -Index.

LEMMA 10. Given an uncertain graph G, an integer k, and a
probability threshold η, let R be a tree node in η-treek such
that (i) R.η-threshold ≥ η; and (ii) there does not exist a
parent R′ of R such that R′.η-threshold ≥ η. Let C be the
set of all vertices in the subtree rooted by R. The induced
subgraph G[C] is a (k, η)-core.

According to Lemma 10, the key to the query processing is

collecting all tree nodes in the subtree rooted by the tree node

R mentioned in the lemma. Following this general idea, we

provide the pseudocode for query processing in Algorithm 6.

We first collect all result tree nodes in lines 1–7. We can

use constant time to derive the tree node with the largest

70

η-threshold in line 4, if the tree nodes are sorted in a non-

increasing order of their η-thresholds. The order can be

precomputed in the index construction phase, which will be de-

tailed introduced in the next subsection. Note that the number

of tree nodes does not change in the order, and the total space

complexity of the UCF -Index is still O(
∑

u∈V core(u)).
We iteratively process each tree node in the stack in lines 9–

20. Once we find an unvisited tree node in line 11, we find

a root node satisfying the conditions in Lemma 10. We use a

queue to compute all tree nodes rooted by X, and collect all

vertices in the tree nodes into C in lines 12–19. We add C
into the result set in line 20.

EXAMPLE 4. Given an example for computing the (k =
2, η = 0.3)-core in G of Figure 1 based on the UCF -Index.
The η-tree for k = 2 is given in Figure 3. We first locate the
tree nodes R in Lemma 10, which are {v4} and {v7, v9, v10}.
Then we get two result cores, {v4, v2, v3, v5} and {v7, v9, v10}.

Lemma 10 guarantees the correctness of Algorithm 6. The

time complexity of Algorithm 6 is summarized as follows.

THEOREM 6. Given an uncertain graph G(V,E, p), an inte-
ger k and a probability threshold η, the time complexity of
Algorithm 6 is O(|C|), where C is the set of all result vertices,
i.e., C = {u ∈ V |η-thresholdk(u) ≥ η}.

Based on the above theorem, we claim that the time

complexity of our query processing algorithm is optimal, since

it is bounded by the result size.

C. Optimizations for the Index Construction Algorithm
The algorithm to construct the UCF -Index is given in this

section. We first introduce the general idea. For each integer,

we compute the η-threshold for each vertex using the idea

in Algorithm 5. Given the η-thresholds, we can build the η-

tree using the disjoint-set data structure [18]. A similar idea

can be found in [19], [20]. There are two main operations

for the disjoint-set: Union(X,Y) merges the dynamic sets X

and Y. Find(X) returns the set containing X. With the two

optimization techniques, union by rank and path compression,

the amortized time per operation of the disjoint-set is only

O(α(n)), where α(n) is the inverse Ackermann function and

is normally less than 5 [18].

The dominating cost in constructing the UCF -Index is still

computing the η-thresholds for the vertices. Specifically, we

review the Algorithm 5. First, computing and updating the k-

probability of the vertices in each iteration is time-consuming

as the degree of each vertex may be very large. Second, the

number of iterations reaches kmax, and the k-probability of

the vertices are computed from scratch in each iteration.

To speed up computing the η-threshold, we propose two

optimizations in response to the above two challenges.

Core-based Reduction. Given any vertex u in each it-

eration of lines 3–19 of Algorithm 5, the k-probability

of u monotonically decreases due to the removal of its

neighbors v with η-thresholdk(v) ≤ η-thresholdk(u), and

η-thresholdk(u) = k-prob(u,G[{v ∈ V |η-thresholdk(v) ≥
η-thresholdk(u)}]). Without breaking the correctness, we

do not need to consider the edge (u, v) when computing

k-prob(u), if η-thresholdk(v) < η-thresholdk(u). Accord-

ing to Observation 1, the η-threshold of a vertex u for an inte-

ger k is 0 if the core number for u is less than k. Therefore, for

each integer k, we can compute and update the k-probability

of each vertex in the subgraph G[{u ∈ V |core(u) ≥ k}].
Core-based Ordering. To conquer the second challenge, we

propose a top-down strategy. For each vertex u, we arrange

the neighbors of u in a non-increasing order of their core

numbers. Specifically, we denote the set of neighbors v of u
such that core(v) ≥ k by Nk(u). Without losing generality,

let {e1, e2, ..., ei} be the set of edges between u and Nk(u),
and {ei+1, ei+2, ..., ej} be the set of edges between u and

Nk−1(u) \Nk(u).
According to the aforementioned core-based reduction, the

k-probability of u, is initially computed based on the edge set

{e1, e2, ..., ei}, i.e., k-prob(u) = Pr[deg(u|{e1, e2, ..., ei}) ≥
k]. Let X(l, r, k) = Pr[deg(u|{el, el+1, ..., er}) = k]. Given

the integer k − 1, we aim to compute (k − 1)-prob(u) based

on {e1, e2, ..., ej}, which is equivalent to computing X(1, j, h)
for each h ∈ [0, k − 1]. We give the following equation for

computing X(1, j, h):

X(1, j, h) =

h∑
l=0

X(1, i, l) ·X(i+ 1, j, h− l). (7)

Note that the X(1, i, l) of u for each l ∈ [0, k] has

been computed when computing the k-probability of u in

{e1, e2, ..., ei}. Given the integer k−1, we reduce the compu-

tation from X(1, j, h) to X(i+1, j, h) for each h ∈ [0, k−1].

v3

v1

v5

v2

v6

v7

v4

0.2

0
.5

0.2

0.8 0.8

0.6

0.2

0.4

0
.5

v8

v10
v9

0.80.5

0.5 0
.8

0.8

Fig. 4. The optimization of core-based ordering.

EXAMPLE 5. An example of core-based ordering is given
in Figure 4. Consider vertex v5. Given an integer k =
2, we need to compute the k-probability of v5, which is
Pr[deg(v5|{(v2, v5), (v3, v5), (v4, v5), (v6, v5)}) ≥ 2]. Given
that the Pr[deg(v5|{(v2, v5), (v3, v5), (v4, v5)}) = i] for i ∈
[0, 3] has been computed in the previous iteration of k = 3,
we only compute Pr[deg(v5|{(v6, v5)}) = i] for i ∈ [0, 2].
The Overall Algorithm. Based on the two proposed op-

timizations, we give the overall algorithm to construct the

UCF -Index. The pseudocode is presented in Algorithm 7.

For each vertex, we compute the core number and sort the

neighbors by their core numbers in lines 1 and 2. We decrease

k from kmax to 1 in each iteration of lines 4–19. We initialize

the k-probability for each vertex based on Equation 7. Then

similar to Algorithm 5, we iteratively remove the vertex with

the minimum k-probability from the graph and push it into

a stack S in line 14. With this strategy, the vertex with the

smallest η-threshold is at the bottom of S, while the vertex

with the largest η-threshold is at the top of S.
Based on the stack S , we construct the η-tree in Algo-

rithm 8. Given that the vertex is sorted by the η-threshold in

71

Algorithm 7: UCF-INDEX CONSTRUCTION

Input: An uncertain graph G(V,E, p)
Output: UCF -Index index of G

1 invoke Algorithm 1 to compute core(u) for all u ∈ V ;

2 sort the neighbors of each u ∈ V by their core numbers;

3 kmax ← maxu∈V core(u);
4 for k ← kmax to 1 do
5 G′(V ′, E′, p)← G[{u ∈ V |core(u) ≥ k}];
6 foreach u ∈ V ′ do
7 compute k-prob(u,G′) according to Equation 7;

8 curThres← 0;

9 S ← initialize an empty stack;

10 while G′ is not empty do
11 u← argminv∈V ′ k-prob(v,G′);
12 curThres← max(k-prob(u,G′), curThres);
13 η-thresholdk(u)← curThres;

14 S.push(u);
15 foreach v ∈ N (u,G′) do
16 remove the edge (u, v) from G′;
17 update k-prob(v,G′);
18 V ′ ← V ′ \ {u};
19 construct η-treek by invoking Algorithm 8;

20 return η-treek for all 1 ≤ k ≤ kmax;

S. We compute the set of vertices with the largest η-threshold

in lines 2–5. According to Lemma 8, any two vertices u
and v belong to the same η-tree node if η-thresholdk(u) =
η-thresholdk(v) and (u, v) exists. Therefore, we safely create

a tree node X for the vertex set of each connected component

(lines 7–8). We connect or merge X to existing tree nodes in

lines 9–15. In line 9, we locate the neighbors of connected

component G[C], i.e., N (G[C]) = {v ∈ V |u ∈ C, v �∈
C, (u, v) ∈ E}. Note that η-thresholdk(v) �= ct for each

neighbor v in line 9. Otherwise, v will be contained in the

connected component G[C]. If η-thresholdk(v) < ct, that

means the tree node containing v has not been created, and

that vertex is skipped in line 10. We locate the tree node Y

containing v in line 11, and the root node Z of Y in line 12.

We assign the parent of Z as X in line 14 if Z.η-threshold is

larger. Otherwise, we have X.η-threshold = Z.η-threshold
and merge them into one tree node (line 15) even though X

and Z are not directly connected. We analyze the running time

of Algorithm 8 as follows.

LEMMA 11. Given an uncertain graph G(V,E, p) and the
vertex stack S, the time complexity of Algorithm 8 is O(|Ek|),
where Ek is the set of edges in the subgraph induced by
{u ∈ V |core(u) ≥ k}.

Based on Lemma 11 and Theorem 4, we summarize the

time complexity of Algorithm 7 as follows.

THEOREM 7. Given an uncertain graph G(V,E, p), the time
complexity of Algorithm 7 is O(kmax|V | log |V |+ k2max|E|),
where kmax = maxu∈V core(u).

Algorithm 8: η-TREE CONSTRUCTION

Input: An uncertain graph G, an integer k and a vertex

stack S
Output: The η-treek of G

1 while S is not empty do
2 ct← η-thresholdk(S.top());
3 H ← ∅;
4 while S �= ∅ ∧ η-thresholdk(S.top()) = ct do
5 H ← H ∪ {S.pop()};
6 foreach connected component G[C] ∈ G[H] do
7 X← create a tree node;

8 X.vertices← C;

9 foreach v ∈ N (G[C]) do
10 if η-thresholdk(v) < ct then continue;

11 Y←get the node containing v;

12 Z←get the root of Y;

13 if Z.η-threshold > X.η-threshold then
14 Z.parent← X;

15 else merge the tree nodes X and Z;

16 return η-treesk;

VI. EXPERIMENTS

We conducted extensive experiments to evaluate the perfor-

mance of our proposed solutions. The algorithms evaluated in

our experiments are summarized as follows:

• UC-Online: Algorithm 3.

• UCO-Query: Algorithm 4.

• UCF-Query: Algorithm 6.

• UCO-Construct: Algorithm 5.

• UCF-Construct: the naive algorithm to construct the

UCF -Index, which invokes UCO-Construct to compute

the η-threshold for each vertex.

• UCF-Construct-R: the algorithm to construct the

UCF -Index, which applies the core-based reduction
optimization from Section V.

• UCF-Construct∗ (Algorithm 7): the algorithm to construct

the UCF -Index, which applies both core-based order and

core-based ordering optimizations from Section V.

All algorithms were implemented in C++ and compiled

using a g++ compiler at a -O3 optimization level. All the

experiments were conducted on a Linux Server with an Intel

Xeon 3.46GHz CPU and 96GB DDR3-RAM.

Datasets. We used eight publicly-available real-world graphs

to evaluate the algorithms. The edge probabilities in the first

four datasets came from real-world applications, while the

probabilities in the last four datasets were randomly assigned.

Krogan is a protein-protein interaction (PPI) network [21].

The vertices represent proteins, and the edges represent the

interactions between pairs of proteins. The edge probability

represents the possibility of an interaction between the pair

of proteins connected by this edge [22]. Flickr (https://www.

flickr.com) is an online community for sharing photos. The

edge probability is the Jaccard coefficient of interest groups

two users share [9], [17]. DBLP (https://dblp.uni-trier.de) is

72

TABLE I
NETWORK STATISTICS

Datasets |V | |E| degmax kmax

Krogan 2,559 7,031 141 15
Flickr 24,125 300,836 546 225
DBLP 684,911 2,284,991 611 114
BioMine 1,008,201 6,722,503 139,624 448

Web-Google 875,713 4,322,051 6,332 44
Cit-Patents 3,774,768 16,518,947 793 64
LiveJournal 3,997,962 34,681,189 14,815 360
Orkut 3,072,441 117,185,083 33,313 253

a computer science bibliography website. Each vertex cor-

responds to an author, and edges represent co-authorships.

The edge probability is an exponential function based on the

number of collaborations [9], [17]. BioMine (https://www.cs.

helsinki.fi/group/biomine/) is a snapshot of the database of the

BioMine project [23] containing biological interactions. The

edge probability is based on the confidence that the interaction

actually exists [9], [17].

Web-Google is a web network. Cit-Patents is a citation net-

work. LiveJournal and Orkut are social networks. A detailed

description of these four networks can be found in SNAP

(http://snap.stanford.edu/index.html) with edge probabilities

assigned uniformly and at random using the interval [0, 1].
Detailed statistics of these datasets are summarized in

Table I. The maximum degree (degmax) and the maximum

core number (kmax) are shown in the last two columns.

A. Performance of Query Processing
Our first set of experiments evaluate the performance of

query processing by varying k and η. We adopt similar settings

used in [9] for η, and choose 0.1, 0.3, 0.5, 0.7, and 0.9, with

0.5 as the default. We choose 5, 10, 15, 20, and 25 for k, with

15 as the default. Due to the space limitations, we only report

the figures for DBLP, BioMine, LiveJournal and Orkut. The

results on other datasets show the similar trends. The results

for all datasets using the default parameter settings follow.

Evaluation-I: Varying k. The running time for UCF-Query,

UCO-Query, and UC-Online when varying k is shown in

Figure 5. UCF-Query is faster than UCO-Query for every k on

all datasets, and the gap between them gradually increases as k
grows. For example, in LiveJournal, UCF-Query takes about

14ms while UCO-Query takes around 435ms when k = 5.

When k reaches 25, UCF-Query takes only 105μs (1μs =

10−6s), while UCO-Query still takes approximately 36ms.

Additionally, as k grows, UCF-Query shows a significant

downward trend on all datasets, because the time UCF-Query
takes to process is strictly dependent on the size of results, and

the size of results becomes smaller as k increases. The time

for UCO-Query is relatively steadier compared to UCF-Query.

However, on some datasets, UC-Online shows slightly upward

trends, since it takes more time to initialize and update η-

degree for a large k. Overall, UCF-Query is significantly faster

than UC-Online, particularly for a large k.

Evaluation-II: Varying η. Figure 6 shows the running time

for UCF-Query,UCO-Query, and UC-Online when varying η.

Compared to Figure 5, the changes as η increases for all

algorithms are not as obvious. In fact, for some datasets,

UC-Online UCO-Query UCF-Query

10-9
10-7
10-5
10-3
10-1

10

5 10 15 20 25

R
un

ni
ng

 T
im

e
(s

)

(a) DBLP

10-6

10-4

10-2

1

102

5 10 15 20 25

R
un

ni
ng

 T
im

e
(s

)

(b) BioMine

10-5

10-3

10-1

10

5 10 15 20 25

R
un

ni
ng

 T
im

e
(s

)

(c) LiveJournal

10-4

10-2

1

102

5 10 15 20 25

R
un

ni
ng

 T
im

e
(s

)

(d) Orkut

Fig. 5. Query time for different k (η = 0.5)

UC-Online UCO-Query UCF-Query

10-8

10-6

10-4

10-2

1

0.1 0.3 0.5 0.7 0.9

R
un

ni
ng

 T
im

e
(s

)
(a) DBLP

10-6

10-4

10-2

1

102

0.1 0.3 0.5 0.7 0.9

R
un

ni
ng

 T
im

e
(s

)

(b) BioMine

10-4

10-2

1

102

0.1 0.3 0.5 0.7 0.9

R
un

ni
ng

 T
im

e
(s

)

(c) LiveJournal

10-3

10-1

10

103

0.1 0.3 0.5 0.7 0.9

R
un

ni
ng

 T
im

e
(s

)

(d) Orkut

Fig. 6. Query time for different η (k = 15)

the trends are almost stable. For example, with BioMine, the

running time for UCF-Query drops from 67μs with η = 0.1
to 17μs with η = 0.9. Meanwhile, UCO-Query drops from

about 16ms to 10ms. Additionally, unlike Figure 5, the running

time of UC-Online demonstrates a slight downward trend with

some datasets. The dominating factor, in this case, is that the

η-degree becomes smaller as η becomes larger. We can see

that the running time for UCO-Index and UCF -Index is

more sensitive to k than η. This is mainly because the size

of k-core will be largely reduced when k increases, and the

(k, η)-core is contained in a k-core. Overall, the UCF-Query
significantly outperforms both UCO-Query and UC-Online.

Evaluation-III: Query Performance on Different Datasets.
The running time for UCF-Query,UCO-Query, and UC-Online
with the default parameters k = 15 and η = 0.5 on all

datasets are shown in Figure 7. We can see that UCF-Query
is not only more efficient than UCO-Query but is also several

orders of magnitude faster than UC-Online on all datasets.

The running time for UCF-Query on Krogan is about 0.012μs,

which is the smallest value of all the results. Meanwhile, the

cost for UCO-Query and UC-Online is about 8μs and 2ms

respectively on the same dataset. On the Orkut dataset with

over 100 million edges, UCF-Query only takes about 17ms,

while UCO-Query and UC-Online takes approximately 857ms

and 190s respectively.

73

10-9
10-7
10-5
10-3
10-1

10
103

Krogan

Flickr

DBLP

BioM
ine

W
eb-Google

Cit-Patents

LiveJournal

Orkut

R
un

ni
ng

 T
im

e
(s

)
UC-Online UCO-Query UCF-Query

Fig. 7. Query time on different datasets

B. Performance of Index Construction
Evaluation-IV: Index Size with Different Datasets. The

size of UCF -Index for different datasets is reported in

Figure 8 with UCO-Index added as a comparison. The size

of UCF -Index gradually grows as the number of edges

increases, and with most datasets, UCF -Index needs more

space due to the maintenance of the parent-children relation-

ship in the η-tree. For example, in Cit-Patents, UCO-Index
takes up about 140MB, while UCF -Index consumes about

160MB. However, we find that, with some datasets, the size

of UCF -Index is smaller than UCO-Index. For exam-

ple, in Orkut, UCO-Index takes up about 950MB, while

UCF -Index only needs 800MB. This is because several

vertices were contracted into each tree node, and the η-

threshold is only maintained for the tree node.

10KB
100KB

1MB
10MB

100MB
1GB

10GB

Krogan

Flickr

DBLP

BioM
ine

W
eb-Google

Cit-Patents

LiveJournal

Orkut

In
de

x
Si

ze

UCO-Index UCF-Index

Fig. 8. Index size for different datasets

Evaluation-V: Construction Time on Different Datasets.
This experiment is designed to evaluate our optimization

techniques for index construction. UCF-Construct denotes the

naive algorithm to construct the UCF -Index, with Algo-

rithm 5 to compute the η-thresholds for all vertices and all

integers of k. UCF-Construct-R denotes the core-based re-
duction technique described in Section V-C. UCF-Construct∗

denotes the combined core-based reduction and core-based or-
dering optimizations (Algorithm 7). We have also included the

running time for UCO-Construct, the algorithm that constructs

the UCO-Index, as a comparison. The results are reported

in Figure 9. Compared to UCO-Construct, UCF-Construct
originally requires additional time to construct the η-tree;

however, our two optimizations significantly reduce this time.

On the largest dataset Orkut, UCO-Construct, UCF-Construct,
UCF-Construct-R, and UCF-Construct∗ takes approximately

12.5 hours, 12.6 hours, 5.5 hours, and 2.4 hours, respectively.

Evaluation-VI: Scalability Testing. This experiment tests

the scalability of our proposed algorithms. Due to the space

limitations, we have only included the results for two real-

world graph datasets as representatives — BioMine and Orkut.

The results using the other datasets show similar trends. For

each dataset, we vary the graph size and graph density by

randomly sampling nodes and edges from 20% to 100%.

10-3

10-1

10

103

105

Krogan

Flickr

DBLP

BioM
ine

W
eb-Google

Cit-Patents

LiveJournal

Orkut

R
un

ni
ng

 T
im

e
(s

)

UCO-Construct
UCF-Construct

UCF-Construct-R
UCF-Construct*

Fig. 9. Time cost for index construction

When sampling nodes, we derive the induced subgraph of

the sampled nodes, and when sampling edges, we select

the incident nodes of the edges as the vertex set. The

time cost of UCF-Construct∗ at different percentages are

reported in Figure 10, with UCO-Construct, UCF-Construct
and UCF-Construct-R as comparisons.

As we can see as |V | or |E| increases, the processing

time to construct all the indexes grows. However, the gap

between UCF-Construct and UCO-Construct is not obvious,

because the major cost in UCF-Construct is computing the

η-thresholds. UCF-Construct∗ performs better than the other

algorithms in all cases, and the gaps between UCF-Construct∗

and the other algorithms increase as the sampling ratio in-

creases. Overall, these results imply that our optimization

techniques are effective, especially with big graphs.

UCO-Construct
UCF-Construct

UCF-Construct-R
UCF-Construct*

10-1
1

10

102
103
104

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(a) BioMine (Vary |V |)

10

102

103

104

105

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(b) Orkut (Vary |V |)

10

102

103

104

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(c) BioMine (Vary |E|)

102

103

104

105

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(d) Orkut (Vary |E|)
Fig. 10. Scalability of index construction

VII. RELATED WORK

Uncertain Graphs. Many fundamental graph problems have

been studied in uncertain graphs. Jin et al. [5] study the

distance-constraint reachability problem on uncertain graphs.

Potamias et al. [17] propose a framework to efficiently answer

k-nearest neighbor queries over uncertain graphs. Gao et al.

[24] study the problem of reverse k-nearest neighbor search

on uncertain graphs. Zou et al. [6] investigate the problem of

discovering and mining frequent subgraph patterns in uncertain

graphs. Jin et al. [7] consider the problem of discovering

highly reliable subgraphs of uncertain graphs. The truss de-

composition of uncertain graphs is studied by [25].

K-Core Computations. k-core is first introduced by Seidman

[8]. Batagelj and Zaversnik [26] propose a linear algorithm

74

for core decomposition, which is presented in Section II. I/O

efficient algorithms for core decomposition are studied in [27]–

[29]. Montresor et al. [30] investigate a distributed algorithm

for core decomposition. Core decomposition in random graphs

is studied in [31]–[34]. Additionally, k-core is studied using

weighted graphs in [35], directed graphs in [36], dynamic

graphs in [37]–[39] and multi-dimensional graphs in [40]. [9]

first explores the k-core model in uncertain graphs. The details

of this approach are presented in Section III. A variation for

the (k, η)-core, denoted by (k, θ)-core, is proposed in [41] to

capture the k-core probability of each individual vertex in the

uncertain graph.

VIII. CONCLUSION

This paper presents an index-based solution for computing

all the (k, η)-cores in uncertain graphs. Our proposed index,

called UCF -Index, maintains a tree structure for each inte-

ger k. The size of UCF -Index is well-bounded by O(m).
Based on UCF -Index, queries for any input parameter k
and η can be answered in optimal time. Two optimizations

for UCF -Index are also presented to speed up the index

construction. The results of extensive performance studies

demonstrate the effectiveness of this index-based approach and

the efficiency of the query algorithm.
Acknowledgements. Lu Qin is supported by ARC

DP160101513. Ying Zhang is supported by ARC

FT170100128 and DP180103096. Lijun Chang is supported

by ARC DE150100563 and DP160101513. Rong-Hua Li is

supported by NSFC Grants 61772346 and Beijing Institute of

Technology Research Fund Program for Young Scholars.

REFERENCES

[1] C. C. Aggarwal, Managing and Mining Uncertain Data. Springer,
2009.

[2] E. Adar and C. Re, “Managing uncertainty in social networks.” IEEE
Data Eng. Bull., vol. 30, no. 2, pp. 15–22, 2007.

[3] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” JASIST, vol. 58, no. 7, pp. 1019–1031, 2007.

[4] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa, “Injecting uncertainty in
graphs for identity obfuscation,” PVLDB, vol. 5, no. 11, pp. 1376–1387,
2012.

[5] R. Jin, L. Liu, B. Ding, and H. Wang, “Distance-constraint reachability
computation in uncertain graphs,” PVLDB, vol. 4, no. 9, pp. 551–562,
2011.

[6] Z. Zou, H. Gao, and J. Li, “Discovering frequent subgraphs over
uncertain graph databases under probabilistic semantics,” in KDD, 2010,
pp. 633–642.

[7] R. Jin, L. Liu, and C. C. Aggarwal, “Discovering highly reliable
subgraphs in uncertain graphs,” in KDD, 2011, pp. 992–1000.

[8] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[9] F. Bonchi, F. Gullo, A. Kaltenbrunner, and Y. Volkovich, “Core decom-
position of uncertain graphs,” in KDD, 2014, pp. 1316–1325.

[10] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities
in large graphs,” in SIGMOD, 2014, pp. 991–1002.

[11] C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis,
“Corecluster: A degeneracy based graph clustering framework.” in AAAI,
vol. 14, 2014, pp. 44–50.

[12] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani,
“Large scale networks fingerprinting and visualization using the k-core
decomposition,” in NIPS, 2006, pp. 41–50.

[13] H. Zhang, H. Zhao, W. Cai, J. Liu, and W. Zhou, “Using the k-core
decomposition to analyze the static structure of large-scale software
systems,” The Journal of Supercomputing, vol. 53, no. 2, pp. 352–369,
2010.

[14] G. D. Bader and C. W. Hogue, “An automated method for finding
molecular complexes in large protein interaction networks,” BMC bioin-
formatics, vol. 4, no. 1, p. 2, 2003.

[15] R. Andersen and K. Chellapilla, “Finding dense subgraphs with size
bounds,” in International Workshop on Algorithms and Models for the
Web-Graph, 2009, pp. 25–37.

[16] J. Healy, J. Janssen, E. Milios, and W. Aiello, “Characterization of
graphs using degree cores,” in International Workshop on Algorithms
and Models for the Web-Graph, 2006, pp. 137–148.

[17] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios, “K-nearest neighbors
in uncertain graphs,” PVLDB, vol. 3, no. 1-2, pp. 997–1008, 2010.

[18] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” JACM, vol. 34, no. 3, pp.
596–615, 1987.

[19] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search for
large attributed graphs,” PVLDB, vol. 9, no. 12, pp. 1233–1244, 2016.

[20] A. E. Sariyüce and A. Pinar, “Fast hierarchy construction for dense
subgraphs,” PVLDB, vol. 10, no. 3, pp. 97–108, 2016.

[21] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko,
J. Li, S. Pu, N. Datta, A. P. Tikuisis et al., “Global landscape of protein
complexes in the yeast saccharomyces cerevisiae,” Nature, vol. 440, no.
7084, p. 637, 2006.

[22] A. D. Fox, B. J. Hescott, A. C. Blumer, and D. K. Slonim, “Connected-
ness of ppi network neighborhoods identifies regulatory hub proteins,”
Bioinformatics, vol. 27, no. 8, pp. 1135–1142, 2011.

[23] L. Eronen and H. Toivonen, “Biomine: predicting links between biolog-
ical entities using network models of heterogeneous databases,” BMC
bioinformatics, vol. 13, no. 1, p. 119, 2012.

[24] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On efficiently
finding reverse k-nearest neighbors over uncertain graphs,” The VLDB
Journal, vol. 26, no. 4, pp. 467–492, 2017.

[25] X. Huang, W. Lu, and L. V. Lakshmanan, “Truss decomposition of
probabilistic graphs: Semantics and algorithms,” in SIGMOD, 2016, pp.
77–90.

[26] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decompo-
sition of networks,” arXiv preprint cs/0310049, 2003.

[27] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/o efficient core graph
decomposition at web scale,” in ICDE, 2016, pp. 133–144.

[28] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core decom-
position of large networks on a single pc,” PVLDB, vol. 9, no. 1, pp.
13–23, 2015.

[29] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in ICDE, 2011, pp. 51–62.

[30] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” TPDS, vol. 24, no. 2, pp. 288–300, 2013.

[31] S. Janson and M. J. Luczak, “A simple solution to the k-core problem,”
Random Structures & Algorithms, vol. 30, no. 1-2, pp. 50–62, 2007.

[32] M. Molloy, “Cores in random hypergraphs and boolean formulas,”
Random Structures & Algorithms, vol. 27, no. 1, pp. 124–135, 2005.

[33] T. Łuczak, “Size and connectivity of the k-core of a random graph,”
Discrete Mathematics, vol. 91, no. 1, pp. 61–68, 1991.

[34] B. Pittel, J. Spencer, and N. Wormald, “Sudden emergence of a giantk-
core in a random graph,” Journal of Combinatorial Theory, Series B,
vol. 67, no. 1, pp. 111–151, 1996.

[35] A. Garas, F. Schweitzer, and S. Havlin, “A k-shell decomposition method
for weighted networks,” New Journal of Physics, vol. 14, no. 8, p.
083030, 2012.

[36] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: Measuring
collaboration of directed graphs based on degeneracy,” in ICDM, 2011,
pp. 201–210.

[37] A. E. Sarı́yüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek, “Streaming algorithms for k-core decomposition,” PVLDB,
vol. 6, no. 6, pp. 433–444, 2013.

[38] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in large
dynamic graphs,” TKDE, vol. 26, no. 10, pp. 2453–2465, 2014.

[39] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in ICDE, 2017, pp. 337–348.

[40] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “When engagement
meets similarity: efficient (k, r)-core computation on social networks,”
PVLDB, vol. 10, no. 10, pp. 998–1009, 2017.

[41] Y. Peng, Y. Zhang, W. Zhang, X. Lin, and L. Qin, “Efficient probabilistic
k-core computation on uncertain graphs,” in ICDE, 2018, pp. 1192–
1203.

75

